Lab - Urinalysis
PFN: 18DLAL04

Hours: 1.0

Terminal Learning Objective

- OBJECTIVE:
 - Action: Analyze a urine sample and interpret the findings
 - Condition: Given a laboratory subject’s book, laboratory procedures book, a power point presentation under the instruction of a laboratory technician, and inside a laboratory classroom environment.
 - Standard: Identified normal or abnormal urinalysis findings IAW the laboratory subjects book and the laboratory procedures book, scored a 75% or above on the laboratory subject’s computer based exam, and passed the urinalysis macroscopic/microscopic practical test.

References

- References used to develop this Lesson:
 - Laboratory Subjects Book
 - Laboratory Procedures Handout
Reason
Urinalysis can be an important diagnostic tool providing evidence of the disease process since 25% of the body's blood flows through the kidneys each minute.

Agenda
- Identify the types of urine specimen collection.
- Describe types, purpose, and functions of urine preservation.
- Describe normal urine output.
- Identify abnormal urine production to include polyuria, oliguria, and anuria.
- Differentiate between normal and abnormal urine appearance.
- Define specific gravity.

Agenda
- Describe the significance and use for the tests conducted using a chemical exam to include glucose, bilirubin, ketone, specific gravity, blood, pH, protein, urobilinogen, nitrite, and leukocytes.
- Identify the characteristics and significance of elements that may be found in a microscopic examination of a urine specimen to include: WBC's, RBC's, epithelial cells, squamous cells, and transitional cells.
- Identify the characteristics and significance of casts that may be found in a microscopic examination of a urine specimen to include: hyaline casts, epithelial cell casts, hemoglobin casts, granular casts, waxy casts, and fatty casts.
Agenda

- Identify the characteristics and significance of parasites, bacteria, yeasts, and spermatozoa that may be found in a microscopic examination of a urine specimen.
- Identify the characteristics and significance of other artifacts that may be found in a microscopic examination of a urine specimen to include: fiber, hair, talcum powder, and skin cells.
- Identify the characteristics and significance of urine crystals in an acidic urine sample to include: amorphous urates, uric acid, calcium oxalate, and sodium urate.

Agenda

- Identify the characteristics and significance of urine crystals in an alkali urine sample to include: amorphous phosphates, triple phosphate, ammonium urates, calcium carbonate, and calcium phosphate.
- Identify the characteristics and significance of abnormal urine crystals in an acidic urine sample to include: leucine, tyrosine, cystine, cholesterol, and sulfa crystals.

Types of Urine Specimen Collection

- Random - most commonly received specimen
 - Purpose
 - Routine screening
 - Inadequate for microbiological exam
 - Container
 - Clean dry container with tight fitting lid
 - Method
 - Void directly into container or bedpan
Types of Urine Specimen Collection

- Midstream clean-catch
 - Purpose
 - Most commonly used for bacteriological exam
 - Alternative to catheterized specimens
 - Container
 - Sterile container
 - Method
 - Clean area around urethra and discard initial stream

Types of Urine Specimen Collection

- Catheterized
 - Purpose
 - Bacterial culture
 - Routine urinalysis
 - Collection
 - Container
 - Same as midstream clean-catch
 - Method
 - Collected under sterile conditions from catheter

Types of Urine Specimen Collection

- Suprapubic aspiration
 - Purpose
 - Bacterial culture
 - Cytological exam
 - Container
 - Same as clean catch
 - Method
 - External introduction of a needle into the bladder
Types of Urine Specimen Collection

- Two-hour postprandial
 - Purpose
 - Monitoring insulin therapy (diabetes mellitus)
 - Used to compare fasting specimen results
 - Container
 - Clean and dry with tight fitting lid
 - Method
 - Void, Consume meal, collect specimen 2 hours later

Types of Urine Specimen Collection

- Twenty-four hour urine
 - Purpose
 - To measure exact amount of urine chemicals
 - Specimen of choice for quantitative chemical testing
 - Container
 - Clean, dark, dry container designed to hold large volume
 - Method
 - Void first morning, collect all other voids to include day 2 first morning void

Urine Preservation

- Purpose - to prevent changes in urine composition after one hour room temperature
 - Increased Ph
 - Decreased glucose
 - Decreased ketones
 - Decreased bilirubin
 - Decreased urobilinogen
 - Increased nitrite
 - Increased urobilinogen
 - Increased bacteria
 - Increased turbidity
 - Disintegration cellular elements
 - Color changes
Types of Urine Preservatives

- Refrigeration
- Freezing
- Formalin
- Hydrochloric Acid
- Boric Acid / HCL
- Methanol is not a common preservative

Refrigeration

- Short term preservation of chemical and cellular elements
- Advantages and disadvantages
 - Easiest and most common
 - No interference
 - Acceptable for urine culture

Freezing

- Used for bilirubin and urobilinogen
- Advantages and disadvantages
 - Preserves bilirubin and urobilinogen
 - Turbidity occurs upon freezing
Formalin

- Used for sediment preservation
 - Preserves formed elements
- Disadvantage
 - May cause clumping of sediment

Boric Acid

- Used for proteins, uric acid and hormones
- Advantage
 - Acceptable for urine culture

Hydrochloric Acid (HCL)

- Used for calcium, d-aminolevulinic acid, and oxalate testing
- Disadvantages
 - Destroys formed elements
 - Precipitates solutes
Boric acid/HCL

- Test dependent
- Precautions
 - May interfere with some tests
 - When in doubt look it up
 - When shipping - Preserve the specimen as directed by the receiving Laboratory
 - CAUTION: Chemicals may cause burns

Volume

- Normal excretory output of the kidneys
 - Normal void (600 to 2,000) ml/24 hours
 - Normal average void per 24 hours (1200 to 1500) ml/24hrs

Abnormal Urine Volume

- Polyuria
- Oliguria
- Anuria
Polyuria

- Increased urine production - greater than 2,000 mL/24 hrs
- Clinical conditions
 - Diabetes insipidus
 - Diabetes mellitus
 - Nervousness and anxiety
 - Increased fluid intake
 - Diuretic medications
 - Diuretic drinks
 - Chronic renal disease

Oliguria

- Decreased urine production - less than 500 mL/24 hr
- Clinical conditions
 - Decrease fluid intake
 - Increase ingestion of salt
 - Excessive perspiration
 - Dehydration
 - Partial renal shutdown

Anuria

- Cessation of urine flow - 100 mL/24 hr
 - Considered a medical emergency
- Clinical conditions
 - Total renal shutdown
 - Massive fluid loss
 - Heavy metal poisoning
 - Blockage of renal tubules
Color
- Normal color - due to varying amounts of pigment called urochrome
- Straw
- Yellow
- Amber - normal unless caused by the presence of bilirubin
- Colorless - normal if caused by recent fluid consumption

Abnormal Urine Color
- Red - Fresh blood
- Orange - Medications
- Brown - Hemoglobin
- Black - Malaria
- Blue-green - Pseudomonas infections; medications
- Colorless - Due to the absence of urochrome
- Amber - Bilirubin

Appearance
- Clear
 - No turbidity
- Hazy
 - Slightly turbid
- Cloudy
 - Excessive turbidity
Specific Gravity

- Measure of total solids in urine
- Density of urine sample compared to the density of distilled water
- Purpose
 - Measures concentrating and diluting abilities of kidneys
 - Best routine test for total kidney function
- A Refractometer is also used for Specific Gravity as a confirmatory method

pH

- Determines the acidity/alkalinity of urine
- Urine becomes alkaline upon standing
- Useful in identification of crystals
- Used to rule out acidosis/alkalosis

pH

- Clinical significance
- Acidic
 - Diabetic acidosis
 - Gout
 - Dehydration
 - Severe diarrhea
 - High protein diet
 - Certain medication
pH

- Clinical significance
 - Alkaline
 - Vomiting
 - Renal tubular acidosis
 - Certain medications
 - Urinary tract infection
 - After meals

Protein

- Purpose - best routine test to detect renal disease
- Clinical significance - proteinuria (increase protein)
 - Strenuous physical exercise
 - Emotional stress
 - Pregnancy
 - Infections

Protein

- Epithelial cells in urine
- Severe renal disease
- Multiple myeloma
- Leukemia
- Glomerulonephrites
- Hematuria
- Hemoglobinuria
- WBC in urine
Glucose
- Most common sugar found in urine
- Presence of detectable amounts known as Glycosuria
- Occurs when glucose levels exceeds reabsorption capacity
- Clinical significance
 - Diabetes mellitus
 - Renal tubular dysfunction
 - Pregnancy with possible latent gestational diabetes

Ketone Bodies
- Ketonuria
- Intermediate products of fat metabolism
- Presence due to altered carbohydrate metabolism
- Clinical significance
 - Diabetes mellitus
 - Anorexia nervosa
 - Starvation or fad diets

Blood and Hemoglobin
- Hematuria - presence of intact RBC's in the urine
 - Bleeding in the urinary tract
 - Glomerular damage
 - Trauma
- Hemoglobinuria - presence of free hemoglobin in the urine
Blood and Hemoglobin

- Due to intravascular hemolysis
 - Hemolytic anemia
 - Hemolytic transfusion reactions
 - Malaria

- Due to lysis of RBC's in urinary tract
 - Traumatic passage of RBC's thru kidney to bladder
 - Exposure of RBC's to dilute urine in the bladder

Bilirubin

- Bilirubinuria

- Degrades upon standing while exposed to light

- Clinical significance
 - Diagnostic sign of liver disease
 - Possible biliary obstruction
 - Increase in diseases that causes conjugated bilirubin to be increase in bloodstream

Urobilinogen

- Increase in condition with increase bilirubin
 - Hemolytic anemia
 - Malaria

- Increased in conditions that prevents reabsorption
 - Hepatitis
 - Cirrhosis
Nitrites

- Suggests 10^5 (100,000) or more bacteria per mL of urine
- Indicative of an infection by nitrate reducing bacteria. First morning specimen is preferred.

Leukocyte Esterase

- White blood cells release esterases in urine. Test is not designed to be exact on concentration of leukocytes.
- Pyuria - white blood cells in urine
 - Indication of bacteriuria
 - Indirectly indicates UTI

Leukocyte Esterase Determination

- False negatives
 - High levels of glucose and proteins
 - High urine specific gravity
Microscopic Examination

- Stains used in analysis
 - Sternheimer Malbin- Stains protein blue
 - Protein
 - Peroxidase
 - Differentiates WBC's from renal epithelial cells by staining granules in neutrophils blue-black.
 - 3% acetic acid
 - Differentiates RBC's from yeast
 - Sudan III
 - Fat globules will stain orange
 - Iodine
 - Starch globules will stain blue to black

White Blood Cell

- More than 5 WBC/HPF is abnormal (infection or inflammation)

- Identifying characteristics
 - Round to oval shape.
 - Segmented or lobulated nucleus (if visible)
 - Granular cytoplasm

- Report all WBC's as number per high power field (8/HPF)
Red Blood Cell

- More than 3 RBC/HPF is abnormal
- Increased in
 - Internal bleeding
 - UTI
 - Traumatic catheterization
 - Some type of trauma
 - Strenuous exercise
 - Menstruation

Red Blood Cell

- Identifying characteristics
 - Pale, refractive biconcave discs
 - Variation in size
 - In concentrated urine, small and crenated
 - In dilute urine, large and swollen

- Report all RBC’s number per high power field (#/HPF)
Epithelial Cell

- Originate from the genitourinary system

- Three types
 - Squamous
 - Transitional
 - Renal

- Report all epithelial cells number per high power field (#/HPF)

Epithelial Cell

- Squamous
 - From distal of urethra
 - Large, flat irregularly shaped
 - Small central nucleus
 - Abundant cytoplasm
Epithelial Cell

- Transitional
 - From renal pelvis and bladder
 - Round or pear-shaped
 - May have tail-like projections
 - Large, centrally located nucleus
 - May have two nuclei
- May be seen in renal disease

Epithelial Cell

- Renal
 - From renal tubules and nephron
 - Slightly larger than WBC
 - Nucleus usually off-center
 - May be flay, cubodial or columnar
- Suggestive of tubular damage
Casts

- Formation
 - Usually in distal convoluted tubule and collecting duct
 - May also be formed in the ascending loop of Henle

Casts

- Cast formation
 - Aggregation of Tamm-Horsfall protein
 - Attachment of fibrils
 - Interweaving of fibrils
 - Further protein fibril interweaving
 - Possible attachment
 - Detachment of protein fibrils
 - Excretion of cast
Casts

- General identifying characteristics
 - Parallel sides
 - Round to blunt ends

Types of Casts

- Hyaline cast
- White blood cell cast
- Red blood cell cast
- Hemoglobin cast
- Epithelial cell cast
- Granular cast
- Waxy cast
- Fatty cast

Types of Casts

- Hyaline casts consist of
 - Refractive index
 - Normal following strenuous exercise, dehydration, heat exposure and emotional stress
 - Increased in acute glomerulonephritis, pyelonephritis, chronic renal disease, and congestive heart failure
 - Possible basis for all other casts
Types of Casts

- White blood cell cast
 - Refractile and granulated
 - Unless disintegration has begun
 - Indicate infection or inflammation within nephron
Types of Casts

- Red blood cell cast
 - Refractive, yellow to brown
 - May contain RBC’s
 - Primarily associated with glomerulonephrites
 - Other conditions

Types of Casts

- Hemoglobin cast
 - Homogenous
 - Reddish brown color
 - Associated with same conditions as RBC cast
Types of Casts

- Epithelial cell cast
 - Formed by excessive shedding of epithelial cells
 - Indicative of
 - Glomerulonephritis
 - Pyelonephritis
Types of Casts

- Granular cast
 - Contains homogenous granular material
 - Represent stages of degeneration of epithelial cast or WBC casts.
 - May occasionally be seen in normal urine
 - May indicate glomerulonephritis or pyelonephritis

Types of Casts

- Waxy cast
 - Result of granular cast degeneration
 - Refractile
 - Brittle appearance
 - Irregularly shaped
 - Indicative of extreme stasis of urine flow
Types of Casts

- Fatty cast
 - Formed by attachment of lipids
 - Highly refractile
 - Contains yellow brown fat droplets
 - Seen in disorders causing lipiduria
Miscellaneous Structures

- Schistosoma hematobium
 - Common in the Nile valley, Middle East and Mediterranean regions
 - Infection with this parasite occurs from contaminated water
 - The adult worms live in bladder
 - Ovum has terminal spine
 - Rarely seen in United States
 - Report as present

- Trichomonas Vaginalis
 - Most common parasite seen in urine.
 - Results of contamination
 - In fresh specimen
 - Highly motile
 - Multiple flagella
 - Left out specimens
 - Loss of motility
 - Degeneration
 - Report as Trichomonas spp. present
Miscellaneous Structures

- Examples of parasites that can be found in urine as a result of fecal contamination
 - Enterobiosis vermicularis
 - Giardia lamblia
Giardia Lamblia

Miscellaneous Structures

- **Bacteria**
 - Not normally present in urine
 - May indicate UTI or contamination
- Presence of WBC’s and positive nitrite test suggest a UTI
- Report Bacteria as present
Miscellaneous Structures

- Yeast - Candida albicans most common
 - Smooth, colorless, usually ovoid cells
 - Often confused with RBC's
 - Addition of 3% acetic acid will lyse RBC's
 - May show budding or hyphae
 - Found in UTI's
 - Report as present

Hyphae

Spores
Miscellaneous Structures

- Spermatozoa
 - Oval bodies with, thin tails
 - Usually found
 - After sexual intercourse
 - Nocturnal emissions
 - Found in female patient due to contact
 - Verbally report spermatozoa as present

Artifact

- Many contaminants can be found in urine
 - Cotton threads
 - Hair
 - Starch granules, powder granules, talc granules
 - Plant matter
 - Vegetable fibers
 - Glass fragments

- Must be recognize but not reported
Normal crystals

Acidic urine

- Amorphous urates pH < 7.0
 - Yellow-brown small granules
 - If present in large amounts, may give urine sediment pink color
Normal crystal
Acidic urine

- Uric acid
 - Yellow-reddish-brown
 - Markedly increased levels may have pathogenic cause (Gout, Leukemia)
 - Usually clinically insignificant
 - Normal urine crystals in acidic urine may take on a variety of shapes:
 - Rhombic plates
 - Rosettes
 - Wedges
 - Needles

Normal crystal
Acidic urine

- Calcium oxalate
 - Colorless squares with a prismatic X inside
 - Dumbbell and oval forms also occur
 - May also be seen in neutral urine
Normal crystal

Acidic urine

- Sodium urate
 - Colorless
 - Appears as elongated plates in a Chinese fan arrangement
Normal crystal
Alkaline urine

- Amorphous phosphate pH > 7.0
 - Appear as small irregularly shaped granules
 - When present in large amounts, cause a white turbidity in specimen

Normal crystal
Alkaline urine

- Triple phosphate
 - Three to six sided
 - Often referred to as coffin lids
Normal crystal
Alkaline urine

- Ammonium biurate
 - Yellow-brown color
 - Frequently described as thorny apples
Normal crystal
Alkaline urine

- Calcium carbonate
 - Colorless
 - Small dumbbell and spherical shapes
 - Gas produced with the addition of acetic acid

Note: Abnormal crystals are all found in neutral or acidic urine.
Abnormal crystal
Neutral or Acidic urine

- Leucine (amino acid)
 - Yellow brown spheres with concentric circles with radial striations
 - Seen in liver disease
 - Present in conjunction tyrosine crystals
Abnormal crystal
Neutral or Acidic urine

- Tyrosine
 - Resembles fine silky needles
 - Seen in severe liver disease
 - Present with leucine

- Cystine
 - Appears as colorless hexagonal plates
 - Appear due to inherited inability to reabsorb cystine
 - Indicates potential for renal calculi formation
Abnormal crystal
Neutral or Acidic urine

- Cholesterol
 - Appears as a rectangular plate with notched corners
 - May have a stair step affect
 - Indicative of renal damage
Abnormal crystal
Neutral or Acidic urine

- Sulfonamids (sulfa crystals)
 - Presence due to sulfa drug therapy
 - Many different forms
 - Must know patient drug history to rule out

Terminal Learning Objective

- OBJECTIVE:
 - Action: Analyze a urine sample and interpret the findings
 - Condition: Given a laboratory subject’s book, laboratory procedures book, a power point presentation under the instruction of a laboratory technician, and inside a laboratory classroom environment.
 - Standard: Identified normal or abnormal urinalysis findings IAW the laboratory subjects book and the laboratory procedures book, scored a 75% or above on the laboratory subject’s computer based exam, and passed the urinalysis macroscopic/microscopic practical test.
References

- References used to develop this Lesson:
 - Laboratory subjects book
 - TM 8-227-4 Clinical Lab Procedures, Urinalysis

Reason

Urinalysis can be an important diagnostic tool providing evidence of the disease process since 25% of the body's blood flows through the kidneys each minute.

Agenda

- Identify the types of urine specimen collection.
- Describe types, purpose, and functions of urine preservation.
- Describe normal urine output.
- Identify abnormal urine production to include polyuria, oliguria, and anuria.
- Differentiate between normal and abnormal urine appearance.
- Define specific gravity.
Agenda

- Describe the significance and use for the tests conducted using a chemical exam to include glucose, bilirubin, ketone, specific gravity, blood, pH, protein, urobilinogen, nitrite, and leukocytes.
- Identify the characteristics and significance of elements that may be found in a microscopic examination of a urine specimen to include: WBC's, RBC's, epithelial cells, squamous cells, and transitional cells.
- Identify the characteristics and significance of casts that may be found in a microscopic examination of a urine specimen to include: hyaline casts, epithelial cell casts, hemoglobin casts, granular casts, waxy casts, and fatty casts.

Agenda

- Identify the characteristics and significance of parasites, bacteria, yeasts, and spermatozoa that may be found in a microscopic examination of a urine specimen.
- Identify the characteristics and significance of other artifacts that may be found in a microscopic examination of a urine specimen to include: fiber, hair, talcum powder, and skin cells.
- Identify the characteristics and significance of urine crystals in an acidic urine sample to include: amorphous urates, uric acid, calcium oxalate, and sodium urate.

Agenda

- Identify the characteristics and significance of urine crystals in an alkaline urine sample to include: amorphous phosphates, triple phosphate, ammonium urates, calcium carbonate, and calcium phosphate.
- Identify the characteristics and significance of abnormal urine crystals in an acidic urine sample to include: leucine, tyrosine, cystine, cholesterol, and sulfa crystals.
Questions?