Lab - Urinalysis

PFN: 18DLAL04

Hours: 2.0

Lab - Urinalysis

- **OBJECTIVE:**
 - Action: Perform a complete Urinalysis on 5 separate specimens
 - Condition: Given the necessary equipment
 - Standard: Within 75% accuracy

Lab - Urinalysis

- References used to develop this Lesson:
 - Laboratory subjects book
 - TM 8-227-4 Clinical Lab Procedures, Urinalysis
Topics

- Describe proper urine collection procedures
- Describe methods of urine preservation
- Describe normal/abnormal urine output
- Given the proper equipment describe and perform a macroscopic and microscopic procedure

Reason

Urinalysis can be an important diagnostic tool providing evidence of the disease process since 25% of the bodies blood flows through the Kidneys each minute

Types of Urine Specimen Collection

- Random - most commonly received specimen
- Purpose
 - Routine screening
 - Inadequate for microbiological exam
- Container
 - Clean dry container with tight fitting lid
- Method
 - Void directly into container or bedpan
Types of Urine Specimen Collection

- First morning void - specimen of choice for qualitative analysis

- Purpose
 - Routine screening
 - Concentrated

- Container
 - Clean dry container with tight fitting lid

- Method
 - Collect first specimen immediately upon rising

Types of Urine Specimen Collection

- Midstream clean-catch

- Purpose
 - Most commonly used for bacteriological exam
 - Alternative to catheterized specimens

- Container
 - Sterile container

- Method
 - Clean area around urethra and discard initial stream

Types of Urine Specimen Collection

- Catheterized

- Purpose
 - Bacterial culture
 - Routine urinalysis
 - Collection

- Container
 - Same as midstream clean-catch

- Method
 - Collected under sterile conditions from catheter
Types of Urine Specimen Collection

- Suprapubic aspiration
- Purpose
 - Bacterial culture
 - Cytological exam
- Container
 - Same as clean catch
- Method
 - External introduction of a needle into the bladder
Types of Urine Specimen Collection

- Two-hour postprandial
 - Purpose
 - Monitoring insulin therapy (diabetes mellitus)
 - Used to compare fasting specimen results
 - Container
 - Clean and dry with tight fitting lid
 - Method
 - Void, Consume meal, collect specimen 2 hours later

Types of Urine Specimen Collection

- Twenty-four hour urine
 - Purpose
 - To measure exact amount of urine chemicals
 - Specimen of choice for quantitative chemical testing
 - Container
 - Clean, dark, dry container designed to hold large volume
 - Method
 - Void first morning, collect all other voids to include day 2 first morning void
Urine Preservative

- Purpose: to prevent changes in urine composition
 - Increased pH
 - Decreased glucose
 - Decreased ketones
 - Decreased bilirubin
 - Decreased urobilinogen
 - Increased nitrite
 - Increased bacteria
 - Increased turbidity
 - Disintegration cellular elements
 - Color changes

Functions of Preservatives

- Prevent oxygen contact with specimen
- Maintains acid pH
- Retard microbial growth
- Fix organized sediment

Types of Urine Preservatives

- Refrigeration
- Toluene
- Formalin
- Boric Acid / HCL
Refrigeration

- Short term preservation of chemical and cellular elements
- Advantages and disadvantages
 - Easiest and most common
 - No interference
 - Acceptable for urine culture

Freezing

- Used for bilirubin and urobilinogen
- Advantages and disadvantages
 - Preserves bilirubin and urobilinogen
 - Turbidity occurs upon freezing

Formalin

- Used for sediment preservation
 - Preserves formed elements
- Disadvantage
 - May cause clumping of sediment
Boric Acid

- Used for proteins, uric acid and hormones
- Advantage
 - Acceptable for urine culture

Hydrochloric Acid (HCL)

- Used for calcium, d-aminolevulinic acid, and oxalate testing
- Disadvantages
 - Destroys formed elements
 - Precipitates solutes

Boric acid/HCL

- Test dependent
- Precautions
 - May interfere with some tests
 - When in doubt look it up
 - When shipping - Preserve the specimen as directed by the receiving Laboratory
 - CAUTION: Chemicals may cause burns

CAUTION: Chemicals may cause burns
Sub Summary

- Do chemical preservatives interfere with urine dip stick tests?
 Yes
- What is the most common urine preservative?
 Refrigeration

Volume

- Normal excretory output of the kidneys
 - Normal void (600 to 2,000) ml/24 hours
 - Normal average void per 24 hours (1200 to 1500) ml/24hrs

Factors affecting normal urine production

- Temperature
 - Cold (increased)
 - Heat (decreased)

- Diet
 - Liquid (increased)
 - Less (decreased)

- Exercise
 - Sweat (decreased)
Abnormal Urine Volume

- Polyuria
- Oliguria
- Anuria

Slide 29

Polyuria

- Increased urine production - greater than 2,000 mL/24 hrs
- Clinical conditions
 - Diabetes insipidus
 - Diabetes mellitus
 - Nervousness and anxiety
 - Increased fluid intake
 - Diuretic medications
 - Diuretic drinks
 - Chronic renal disease

Slide 30

Oliguria

- Decreased urine production - less than 500 mL/24 hr
- Clinical conditions
 - Decrease fluid intake
 - Increase ingestion of salt
 - Excessive perspiration
 - Dehydration
 - Partial renal shutdown
Anuria

- Cessation of urine flow - 100 mL/24 hr
- Clinical conditions
 - Total renal shutdown
 - Massive fluid loss
 - Heavy metal poisoning
 - Blockage of renal tubules

Sub Summary

- What is increased urine output? Polyurea
- What is normal urine output? Normal void 600 to 2,000 mL/24 hours

Color

- Normal color - due to varying amounts of pigment called urochrome
- Straw
- Yellow
- Amber - normal unless caused by the presence of bilirubin
- Colorless - normal if caused by recent fluid consumption
Abnormal Urine Color

- Red- Fresh blood
- Orange- Medications
- Brown- Hemoglobin
- Black- Malaria
- Blue-green- Pseudomonas infections; medications
- Colorless- Due to the absence of urochrome
- Amber- Bilirubin

Appearance

- Clear
 - No turbidity

- Hazy
 - Slightly turbid

- Cloudy
 - Excessive turbidity

Sub Summary

- What will cause a normal urine to become cloudy?
 If it sits for more then an hour the pH changes and amorphous sediment builds up

- What are normal urine colors?
 Yellow, straw, amber
Specific Gravity

- Measure of total solids in urine
- Density of urine sample compared to the density of distilled water

Purpose
- Measures concentrating and diluting abilities of kidneys
- Best routine test for total kidney function

Clinical significance
- Hyposthenuric - Low specific gravity <1.010
 - Glomerulonephritis
 - Pyelonephritis
 - Diabetes insipidus
 - Large intake of fluids

Hypersthenuric - High specific gravity >1.010
- Hepatic disease
- Congestive heart failure
- Excessive loss of water (dehydration)
- First morning specimen
Specific Gravity

- Isosthenuric - Specific gravity of 1.010 consistently
 - Severe renal damage
 - Indicates loss of both the concentrating and diluting abilities of the kidneys

Specific Gravity Determination

- Refractometer
 - QC
 - Use one or two drops
 - Hold refractometer
 - Read far left scale
 - Reference range 1.000
 - Wipe clean
 - Test sample
 - DI water
Specific Gravity Determination

pH

- Determines the acidity/alkalinity of urine
- Urine becomes alkaline upon standing
- Useful in identification of crystals
- Used to rule out acidosis/alkalosis

pH

- Clinical significance
 - Acidic
 - Diabetic acidosis
 - Gout
 - Dehydration
 - Severe diarrhea
 - High protein diet
 - Certain medication
pH

- Clinical significance
- Alkaline
 - Vomiting
 - Renal tubular acidosis
 - Certain medications
 - Urinary tract infection
 - After meals

Protein

- Purpose - best routine test to detect renal disease
- Clinical significance - proteinuria (increase protein)
 - Strenuous physical exercise
 - Emotional stress
 - Pregnancy
 - Infections

Protein

- Epithelial cells in urine
- Severe renal disease
- Multiple myeloma
- Leukemia
- Glomerulonephrites
- Hematuria
- Hemoglobinuria
- WBC in urine
Protein Confirmation

- Sulfosalicylic acid (SSA)
- Confirmation of urinary proteins
- SSA will precipitate protein
- Rules out false positives
- Procedure
 - Equal amounts
 - Turbidity
 - Reactions semi-quantitated

Glucose

- Most common sugar found in urine
- Presence of detectable amounts known as Glycosuria
- Occurs when glucose levels exceed reabsorption capacity
- Clinical significance
 - Diabetes mellitus
 - Renal tubular dysfunction
 - Pregnancy with possible latent gestational diabetes
Glucose Confirmation

- Clinitest confirmation for glucose
- Non-specific test
- Clinitest procedures
 - Add 5 drops of urine and 10 drops of water
 - Add 1 clinitest tablet
- NOTE: do not touch test tube
 - Shake tube
 - Compare color of liquid
 - Watch for pass through

Ketone Bodies

- Ketonuria
- Intermediate products of fat metabolism
- Presence due to altered carbohydrate metabolism
- Clinical significance
 - Diabetes mellitus
 - Anorexia nervosa
 - Starvation or fad diets

Ketone Bodies Confirmation

- Acetest
 - Confirmation for ketone
- Procedure
 - Place one drop on tablet
 - Compare color with reaction chart
 - Positive is any purple color
Blood and Hemoglobin

- Hematuria - presence of intact RBC's in the urine
 - Bleeding in the urinary tract
 - Glomerular damage
 - Trauma

- Hemoglobinuria - presence of free hemoglobin in the urine

Blood and Hemoglobin

- Due to intravascular hemolysis
 - Hemolytic anemia
 - Hemolytic transfusion reactions
 - Malaria

- Due to lysis of RBC's in urinary tract
 - Traumatic passage of RBC's thru kidney to bladder
 - Exposure of RBC's to dilute urine in the bladder
Bilirubin

- Bilirubinuria
- Degrades upon standing while exposed to light
- Clinical significance
 - Diagnostic sign of liver disease
 - Possible biliary obstruction
 - Increase in diseases that causes conjugated bilirubin to be increase in bloodstream

Bilirubin Confirmation

- Ictotest
 - Confirmation test for bilirubin in urine
- Procedure
 - Place 10 drops of urine on test mat
 - Place one ictotest tablet on mat
 - Place one drop of water on tablet
 - Wait 5 seconds
 - Add one drop of water
 - After 60 seconds observe area around mat
 - Positive reaction (blue or purple color)
Urobilinogen

- Increase in condition with increase bilirubin
 - Hemolytic anemia
 - Malaria
- Increased in conditions that prevents reabsorption
 - Hepatitis
 - Cirrhosis

Nitrites

- Suggests 10^5 (100,000) or more bacteria per mL of urine
- Indicative of a infection by nitrate reducing bacteria

Leukocyte Esterase

- White blood cells release esterases in urine
- Pyuria - white blood cells in urine
 - Indication of bacteriuria
 - Indirectly indicates UTI
Leukocyte Esterase Determination

- False negatives
 - High levels of glucose and proteins
 - High urine specific gravity

Sub Summary

- Which chemical test is indicative of a bacteria infection? Nitrite
- What is the purpose of specific gravity test? To measure the kidneys ability to concentrate urine
Microscopic Examination

- Preparation of specimen
 - Pour specimen
 - Spin
 - Pour off supernatant
 - Resuspend button
 - Place one drop on slide
 - Add cover slip

Microscopic Examination

- Stains used in analysis
 - Sterheimer Malbin
 - Protein
 - Peroxidase
 - Differentiates WBC's from renal epithelial cells
 - 3% acetic acid
 - Differentiates RBC's from yeast
 - Sudan III
 - Fat globules will stain orange
 - Iodine
 - Starch globules will stain blue to black

Microscopic Examination

- Examine entire cover slipped area under 10X using subdued light
 - Low power
 - Scan for casts, mucus and even distribution
- Scan 10-15 fields under high power 40X
 - High and Dry power objective
 - Identify and enumerate sedimentary elements
Sub Summary

- How do you differentiate WBC’s from renal-epithelial cells?
 Peroxidase

- How do you differentiate RBC’s from yeast?
 3% acetic acid

White Blood Cell

- More than 5 WBC/HPF is abnormal

- Identifying characteristics
 - Round to oval shape.
 - Segmented or lobulated nucleus (if visible)
 - Granular cytoplasm

- Report all WBC’s as number per high power field (#/HPF)
Red Blood Cell

- More than 3 RBC/HPF is abnormal
- Increased in
 - Internal bleeding
 - UTI
 - Traumatic catheterization
 - Some type of trauma
 - Strenuous exercise
 - Menstruation

- Identifying characteristics
 - Pale, refractive biconcave discs
 - Variation in size
 - In concentrated urine, small and crenated
 - In dilute urine, large and swollen

- Report all RBC’s number per high power field (#/HPF)
Epithelial Cell

- Originate from the genitourinary system
- Three types
 - Squamous
 - Transitional
 - Renal
- Report all epithelial cells number per high power field (#/HPF)
Epithelial Cell

- Squamous
 - From distal of urethra
 - Large, flat irregularly shaped
 - Small central nucleus
 - Abundant cytoplasm
Epithelial Cell

- Transitional
 - From renal pelvis and bladder
 - Round or pear-shaped
 - May have tail-like projections
 - Large, centrally located nucleus
 - May have two nuclei

- May be seen in renal disease
Epithelial Cell

- Renal
 - From renal tubules and nephron
 - Slightly larger than WBC
 - Nucleus usually off-center
 - May be flay, cubodial or columnar

- Suggestive of tubular damage
Sub Summary

- What would cause RBC's in urine?
 Bleeding, UTI, or menstrual cycles for women
- What type of disease would you find transitional cells in?
 Renal

Casts

- Formation
 - Usually in distal convoluted tubule and collecting duct
 - May also be formed in the ascending loop of Henle

- Cast formation
 - Aggregation of Tamm-Horsfall protein
 - Attachment of fibrils
 - Interweaving of fibrils
 - Further protein fibril interweaving
 - Possible attachment
 - Detachment of protein fibrils
 - Excretion of cast
Casts

- General identifying characteristics
 - Parallel sides
 - Round to blunt ends

Types of Casts

- Hyaline cast
- White blood cell cast
- Red blood cell cast
- Hemoglobin cast
- Epithelial cell cast
- Granular cast
- Waxy cast
- Fatty cast

Types of Casts

- Hyaline casts consist of
 - Refractive index
 - Normal following strenuous exercise, dehydration, heat exposure and emotional stress
 - Increased in acute glomerulonephritis, pyelonephritis, chronic renal disease, and congestive heart failure
 - Possible basis for all other casts
Types of Casts

- White blood cell cast
 - Refractile and granulated
 - Unless disintegration has begun
 - Indicate infection or inflammation

- Red blood cell cast
 - Refractive, yellow to brown
 - May contain RBC’s
 - Primarily associated with glomerulonephrites
 - Other conditions
Types of Casts

- Hemoglobin cast
 - Homogenous
 - Reddish brown color
 - Associated with same conditions as RBC cast
Types of Casts

- Epithelial cell cast
 - Formed by excessive shedding of epithelial cells
 - Indicative of
 - Glomerulonephritis
 - Pyelonephrites
Types of Casts

- Granular cast
 - Contains homogenous granular material
 - Represent stages of degeneration
 - May occasionally be seen in normal urine
 - May indicate glomerulonephritis or pyelonephritis
Types of Casts

- Waxy cast
 - Result of granular cast degeneration
 - Refractile
 - Brittle appearance
 - Irregularly shaped
 - Indicative of extreme stasis of urine flow
Types of Casts

- Fatty cast
 - Formed by attachment of lipids
 - Highly refractile
 - Contains yellow brown fat droplets
 - Seen in disorders causing lipiduria
- Report all casts as number per high power field (LPF)

Mucous

- Irregularly shaped
- Low refractive index
- Increased amounts
- Not considered clinically significant
- Report as occasional, few, or many (OFM)
Miscellaneous Structures

- *Schistosoma hematobium*
 - Common in the Nile valley, Middle East and Mediterranean regions
 - Infection with this parasite occurs from contaminated water
 - The adult worms live in bladder
 - Ovum has terminal spine
 - Rarely seen in united states
 - Report as present
Miscellaneous Structures

- Trichomonas Vaginalis
 - Results of contamination
 - In fresh specimen
 - Highly motile
 - Multiple flagella
 - Left out specimens
 - Loss of motility
 - Degeneration
 - Report as Trichomonas spp. present
Miscellaneous Structures

- Examples of parasites that can be found in urine as a result of fecal contamination
 - Enterobius vermicularis
 - Ascaris lumbricoides
 - Giardia lamblia
Miscellaneous Structures

- Report all parasites as present

Miscellaneous Structures

- Bacteria
 - Not normally present in urine
 - May indicate UTI or contamination
- Presence of WBC’s and positive nitrite
- Report Bacteria as present
Miscellaneous Structures

- Yeast - Candida albicans most common
 - Smooth, colorless, usually ovoid cells
 - Often confused with RBC's
 - Addition of 3% acetic acid will lyse RBC's
 - May show budding or hyphae
 - Found in UTI's
 - Report as present
Miscellaneous Structures

- Spermatozoa
 - Oval bodies with thin tails
 - Usually found
 - After sexual intercourse
 - Nocturnal emissions
 - Found in female patient due to contact

- Verbally report spermatozoa as present
Artifact

- Many contaminants can be found in urine
 - Cotton threads
 - Hair
 - Starch granules, powder granules
 - Plant matter
 - Vegetable fibers
 - Glass fragments

- Must be recognize but not reported
Normal crystals
Acidic urine

- Amorphous urates pH < 7.0
 - Yellow-brown small granules
 - If present in large amounts, may give urine sediment
 pink color
Normal crystal
Acidic urine

- Uric acid
 - Yellow-reddish-brown
 - May take on a variety of shapes
 * Rhombic plates
 * Rosettes
 * Wedges
 * Needles
Normal crystal
Acidic urine

- Calcium oxalate
 - Colorless squares with a prismatic X inside
 - Dumbbell and oval forms also occur
 - May also be seen in neutral urine
Normal crystal
Acidic urine

- Sodium urate
 - Colorless
 - Appears as elongated plates in a Chinese fan arrangement

Normal crystal
Alkaline urine

- Amorphous phosphate pH >7.0
 - Appear as small irregularly shaped granules
 - When present in large amounts, cause a white turbidity in specimen
Normal crystal
Alkaline urine

- Triple phosphate
 - Three to six sided
 - Often referred to as coffin lids
Normal crystal
Alkaline urine
- Ammonium biurate
 - Yellow-brown color
 - Frequently described as thorny apples
Normal crystal
Alkaline urine

- Calcium carbonate
 - Colorless
 - Wedge shaped prisms, seen in singles or rosettes
Normal crystal
Alkaline urine

- Calcium phosphate
 - Colorless thin prisms
 - May be found in neutral pH
 - Soluble in dilute acetic acid
Abnormal crystal
Neutral or Acidic urine

- Leucine
 - Yellow brown spheres with concentric circles with radial striations
 - Seen in liver disease
 - Present in conjunction tyrosine crystals
Abnormal crystal
Neutral or Acidic urine

- Tyrosine
 - Resembles fine silky needles
 - Seen in liver disease
 - Present with leucine
Abnormal crystal
Neutral or Acidic urine

- Cystine
 - Appears as colorless hexagonal plates
 - Appear due to inherited inability to reabsorb cystine
 - Indicates potential for renal calculi formation
Abnormal crystal
Neutral or Acidic urine

- Cholesterol
 - Appears as a rectangular plate with notched corners
 - May have a stair step affect
 - Indicative of renal damage
Abnormal crystal
Neutral or Acidic urine

- Sulfonamids (sulfa crystals)
 - Presence due to sulfa drug therapy
 - Many different forms
 - Must know patient drug history to rule out
Crystals

- Report all crystals as occasional, few or many (OFM)

Sub Summary

- Leucine is found in what disease?
 Acute liver disease due to hepatitis

- What causes cholesterol?
 Renal damage
Summary

- What is increased urine output?
 Polyuria

- How long can you refrigerate a urine specimen?
 8 hours

- How could you get a normal cloudy Urine?
 If it sits for more than an hour the pH changes and amorphous sediment builds up

Summary

- Which chemical test is indicative of a bacterial infection?
 Nitrite

- How do you differentiate WBC’s from renal-epithelial cells?
 Peroxidase

- What would cause RBC’s in urine?
 Bleeding, UTI, or menstrual cycles for women

Summary

- What does 3% acetic acid do?
 It lyses RBC’s to differentiate from yeast

- How do you report Sperm?
 Verbally to the Dr
Questions?

Break